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The extrapolation of the melting points, Tm, of the zi-paraffins to large chain lengths (n—» °°) is
reexamined in order to resolve the differences in the proposed values of the convergence temperature
7*0= Urn Tm. Experimental liquid entropies can be made consistant with a term, R In n, proposed by

Flory and Vrij. This term effectively replaces the well-known expression rm = r0 {n-\- a)/(n + b) with
an expression Tm = T0 (n + a)/(n + \n n + b); thus, slowing the convergence rate and increasing To from
141.1 °C to 144.7 °C. Independent estimates of the parameters in the melting relationship were
obtained from thermodynamic data and the least squares estimate of 7o = 144.7 °C (calculated from
33 melting points with a standard deviation of 7^ = 0.3 °C) could not be altered by more than ±0 .5 °C
by any reasonable variation of the parameters. A simplified melting expression is obtained for poly-
ethylene which includes both the chain end and fold surface energies, and it is shown that chain end
effects partly account for the discrepancy between the 144.7 °C convergence temperature and experi-
mental melting temperatures (~ 139 °C) of extended chain polyethylene crystals.

Key Words: Convergence temperature, melting temperatures, methyl surfaces, n-parafnns,
polyethylene, thermodynamic properties.

1. Introduction

In 1962,1 published a paper [1]x which was intended
to establish on thermodynamic grounds an analytical
expression Tm=f(n) for the orthorhombic normal
paraffin melting temperatures, Tm, as a function of the
number of carbon atoms per molecule, n. That work
resulted in an expression,

Tm = , n + a (1)

of well-known form in use since 1931. The constants
were found to be a = — 1.5, 6 = 5.0, and To= lim Tm(n)

= 414.3 °K (141.1 °C) with an estimated error of
±2.4°K.

In 1963 Flory and Vrij [2] reexamined the thermo-
dynamic basis for the paraffiin melting equation and
modified the assumption [1] of a linear dependance of
the liquid entropy on n, by adding a term, R In rc, to
account for the disordering of the methyl layers during
melting. The effect of this additional term was to
raise the value of To from 414.3 °K (141.1 °C) as pre-
dicted by eq (1) to 418.5 ± 1 °K (145.3 °C). The dif-
ference between these two values is quite significant

1 Figures in brackets indicate the literature references at the end of this paper.

when calculating, for instance, the surface free energy
of polyethylene crystals from melting data or crystal
growth rates. It is the primary purpose of this paper
to investigate this discrepancy and to establish more
firmly a value for To.

2. Liquid Entropies

The n-paraffin melting relationship, AG(7T
m, n)

= AH(Tm, n)-Tm&S(Tm, ra) = 0, can be obtained follow-
ing Flory and Vrij by equating the Gibbs free energy of
fusion (written as a function of temperature and n) to
zero. If the dependence of AG on n is linear, one
obtains equation (1). If not, one obtains a more gen-
eral form of (1) where a and b are functions of n. The
limiting value. To, depends on the functional form of
AG(rm, n). The solid enthalpies and entropies and
the liquid enthalpies are experimentally observed to
be linear with n [3], and the problem centers around
the functional form of the liquid entropies, Si(T9 ri),
which experimentally are found to show some non-
linearity. This nonlinearity in St(T, n) appears in
AG(7\ n) and alters To in a way which depends on the
magnitude and functional form of the nonlinear terms.

Since it is the liquid entropy that supplies the non-
linear terms to the melting relationship one can in-
vestigate these terms independently of the melting
temperatures by looking at the /i-dependence of experi-

481



mental liquid entropies. Experimental liquid entropies
for the ft-paraffins from C5H12 through C18H38 at 300 °K
are listed in table I.2 If Si were linear, then differences
between consecutive values of Si = Scin + Sei would be
constant, and if (Si — R In n) were linear as indicated
by the work of Flory and Vrij then differences between
consecutive values of (Si — R In ri) = Scin + Sei would be
constant. These differences are plotted in figure 1
as a function of n. Figure 1 shows that neither Si
nor Si~R In n are linear with n, and that the R In n
term is too strong and overcompensates for the non-
linearity in Si. The magnitude of the R In n term
could be reduced or alternatively a term like l/n could
be added with or without the R In n term. Included in
figure 1 are consecutive differences of the function
(Si~R In n — 5.6ln) which do not show any increasing
or decreasing trend with n.
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FIGURE 1. Differences between experimental liquid entropies, S b
{open circles); S\ — R Inn {triangles); and Si — R In n — 5.6/n {closed
circles), for consecutive n-paraffins at 300 °K versus average num-
ber of carbon atoms.

TABLE 1. Experimental values of the absolute liquid entropies in
cal/mol • deg at 300 °Kfor the n-paraffins with from 5 to 18 carbon
atoms per molecule

n

5
6
7
8
9

10
11
12
13
14
15
16
17
18

S*(cal/mol/deg)

63.21a

71.05
78.86
86.67
94.505

102.272
110.019
117.869
125.591
133.407
141.111
148.865
156.68
164.37b

aData obtained from the U.S. Bureau of Mines, Bartlesville, Oklahoma.
bThe value for d 8 was extrapolated to 300 °K from its melting point, 301.3 °K.

A more formal analysis of the entropy data is given
in table 2 which shows coefficients and standard devia-

2 Data were obtained from the United States Bureau of Mines, Bartlesville, Oklahoma.
Detailed references are given in reference [3].

tions resulting from least squares fits of the liquid
entropy data for several functions. The lowest stand-
ard deviation was obtained using Si = Sci + Sei + R In n
-f c/n, but the fit using S = Sci + Sei + cR In n was also
quite satisfactory. The inclusion of a l/n2 term seems
an unnecessary complication. But we are still not
able to select unambiguously a functional form for
Si based on the data alone. In order to clarify this
situation we have examined the statistical theory of
polymer chains based on the liquid lattice model.
This model allows one to calculate an expression for
the. entropy of a polymer chain in its liquid phase and
leads not only to an unalterable R Inn term as pointed
out by Flory and Vrij but also predicts terms in powers
of l/n (see appendix A).

It seems most reasonable to conclude then that the
correct expression for the liquid entropy of the /i-paraf-
fins as a function of n and T is

Si(n, T) = Sd(T)n + Sei(T) + R In n + 5.6/rc, (2)

where terms in l/n2 have been ignored as has the tem-
perature dependence of the relatively unimportant
1/n term.

TABLE 2. Least square fits of the liquid n-paraffins entropies at 300 °Kfor several functions

Function

Si — Scin+Sei
St=Scin + Sei+ cR Inn
Si-R In n = Scln+Sei

Si-R In n = Scin + Sei + c

Si-R \nn = Sctn+Sei + c

Standard
deviation

of
function

(0.061)
(0.028)
(0.092)

(0.027)

(0.028)

Constants and their
(standard deviations)

Sc

7.78 (0.004)
7.71 (0.010)
7.59 (0.006)

7.65 (0.005)

7.66 (0.016)

24.4 (0.05)
23.4 (0.14)
21.9 (0.02)

20.7 (0.11)

20.4 (0.50)

c

0.38 (0.06)

5.61 (0.49)

7.73 (4.61)

d

-6.04(13.0)
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3. Melting Equation

By expanding AG = AGCTI + AGe — RT In n — 5.6T/n
about T=To (see reference 2 for details) one finds,

- Tm In Ti + 5.6 -

(3)

which differs from Flory and Vrij's eq (8) only in that it
ihcludes the (l//i) term and the ACpe term which they
chose to neglect. Direct calculations show that
neglected terms remain below 1 percent of the magni-
tude of the leading terms in eq (3). Here AT= To — Tm;
— AH/To and — ACP/TO are the first and second tem-
perature derivatives of AGC at T=T0; — ASe and
— ACpe/To are the first and second temperature deriva-
tives of AGe at T= To; and AHe = AGe + T0ASe. Rewrit-
ing (3) in the form of (1) one obtains,

71 +
AHe-ToACPel2
AH-T0ACp/2

AH-ToACPl2
+ R In TI + 5.

(4)

This result is equivalent, except for the In n and (1/TI)
terms, to eq (1.6) in reference [1]. Equation (4) can
be abbreviated as

m m 71 + a

TABLE 3. . The values of several ̂ quantities at 418 °K determined
from thermodynamic data on the n-paraffins

m n + B(n)

which can now be treated as a generalization of (1).
One can calculate from experimental Tm values

(5)

and these B(n) values are shown in figure 2 for various
values of To and a. The quantity B(ri) can also be
expressed from equation (4) in the following form:

B{n) =
AH-T0ACJ2

l ^

In n -\
(6)

The thermodynamic quantities in eq (6) were as-
signed values as follows. The molar entropies and
enthalpies for the liquid and solid Ti-paraffins (see
footnote 2) were plotted as a function of n. The slopes
and intercepts of these curves equal respectively
SC(T), HC(T) and Se(T), He{T) and differences between
the liquid and solid values gave ASC(T), AHC(T) and
ASe(T), AHe(T) which were then extrapolated to
T=To to give A//, AS, ASe, and AHe. ACP and ACpe
were taken as the slopes of the AH(T) and AHe(T)
curves at T=To. (A more detailed description of
this procedure can be found in [3].) The results of
these calculations are summarized in table 3. Num-
bers from table 3 were used to evaluate the various
terms in eq (6) and these terms are shown in figure 3.

Quantity

A #
ACP
AGe
A// c
ASe

ACPe

Value

1000
0.5

- 3 4 0 0
- 3 0 0 0

1.0
- 8 . 0

Estimated possible error8

± 2 5 cal/mol
± 0 . 5 cal/mol deg

±500 cal/mol
±500 cal/mol

± 0 . 5 cal/mol deg
±4.0 cal/mol deg

a The estimates of error are intentionally pes-
simistic and serve only as a guide in examining the
sensitivity of eq (4) to extreme variations of these
quantities.

Figures 2 and 3 are useful for getting a feeling for
how the various terms in B(n) affect To and a. In
figure 2 the change in shape of B(ri) at small n is asso-
ciated with a change in a, whereas a change in the
slope of B(n) at large n is associated with a change
in To. Figure 3 shows that the term which accounts
mostly for the shape of B{n) at large n is the In n term
and that the remaining three 7i-dependent terms in
B(n) mostly affect the shape of B(n) at small n. The
quantity (ASe — ACpel2) is treated here as an adjust-
able parameter and is used to regulate the vertical
position of B(n).

When B (n) was assumed constant as was done in
[1], curve fitting of the melting equation gave a = —1.5
and To = 414.3 °K. These results can be anticipated
from figure 2 which shows that straightest curve is the
a = —1.5 curve and the flattest curve would be for 7^
a little less than 415. Including a In n term and a
partially compensating ACP term in B (n) as was done
by Flory and Vrij gives B (n) a shape similar to the
a = — 3.0 curve and a large-Ti slope similar to the
419 °K curve. Thus one can anticipate their results
of To = 418.5 °K and a=—2.7. In this present paper
we are adding to B (n) the 1/TI and ACpe terms and from
figure 3 we can anticipate that these will raise the
small-7i end of the curve and thus significantly reduce
the magnitude of a but only slightly lower the large-7i
slope and thus only slightly reduce the To value found
by Flory and Vrij.
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FIGURE 2. B(n), calculated using eq (5), as a function of n for dif-
ferent values of parameters To and a.

In other words, the In n term is the crucial one in
B (n) as far as establishing To is concerned, and the
constants in the other terms can be varied within the
generous range of uncertainties given in table 3 without
appreciably affecting To. In the following section the
results of fitting the melting temperatures to eq (4)
will be shown to verify these anticipated results.

4. Fitting the Melting Data

Previously, eq (1) was fit to 14 values of Tm for the
orthorhombic-liquid transition of the /i-paraffins with
44 ̂  7i ^ 100 [1]. Flory and Vrij calculated 19 addi-
tional values for 11 ̂  n < 44 from data on the enthal-
pies and temperatures of the orthorhombic-hexagonal
and hexagonal-liquid transitions. The resulting 33
values are listed in their paper. The values for the
five shortest paraffins were found to be smaller by
0.1, 0.3, 0.2, 0.2, and 0.1 °C respectively than those
given by Flory and Vrij, based on quadratic extrapola-
tions of experimental free energies.

These data were fit by least squares using an Om-
nitab program to eq (4) in the form:

Tmin)-

where B(n) is given by eq (6).
Such a fit yields least squares estimates of To and

Toa with the assumption that the bracketted terms are
known functions of n and that all experimental un-
certainty is contained in Tm(n). Thus all constants
in B{ri) had to be assigned values before fitting. To
adapt to these restrictions we assigned values to ACP,
ACpe and the factor Tol(AH-ToACPl2) from table 3
and then did the least squares fitting for each of a
series of closely spaced values of (ASe — ACpe/2). The
best value for (ASe — ACpel2) was taken as that which
gave a minimum standard deviation in Tm for fixed
values of ACP, ACpe, and Tol(AH-ToACPl2). This

6 0 70 80 9 0 100

FIGURE 3. A. B(n), calculated from eq (6) using different values for
the thermodynamic quantities. B. Values of the four variable
terms in eq (6) and their sum using the values in table 3 and
To = 418 °K.

The curves are (1) boR In n (where bo = To/(^H-To^Cpf2) -0 .47) ; (2) 5.6 bo(l/n), (3)
6o(ACp/2)n(A7'/7'o), ACp = 0.5; (4) 60(ACPe/2)(l - TJTo), A C p e = - 8 ; (5) sum of curves 1-4,
(6) same as (5) with 60(ASe - ACpe/2) = 5 b0 added, (7) same as (6) with ACpe = - 1 2 , (8) same
as (6) with ACP = 1.0, (9) same as (6) with ACp = 2.0.

method yields a pseudo-least-squares value for
(ASe — ACpe/2), and the standard deviations were
adjusted to account for this third constant. The other
constants in B(ri) could have been handled in the same
way except that the fit was fairly insensitive to them.
Instead, the values of ACP, ACpe, and TOI(AH—TOACPI2)
were varied either together or singly within the range
allowed by table 3 and the fit was repeated each time
yielding new values for 7 ,̂ Toa and (ASe — ACpe/2).
In this way the effect of variations in the assigned
constants on the values of the derived constants could
be observed directly. To eliminate the difficulty of
having the ratio AT/T0 appear in B(n), calculated values
for this ratio were fed back into B(n) until the cal-
culated To became constant. The results were quite
insensitive to the initially assumed value of AT/T0, and
To converged to a constant value to better than 4 figures
after 2 iterations.

Using Tol(AH- ToACPl2) = 0.47, ACP = 0.5 and
AC;* = - 8 . 0 gave best fit values of To = 417.9 °K,
a = -1.5 and (ASe - ACpel2) = 5. The values in table
3 <:ive independently a=—1.5 and (ASe~ ACpe/2) = 5,
which is encouraging agreement. The standard devia-
tions for Tm and To based on 33 minus 3 degrees of
freedom were calculated to be 0.30 and 0.12 °K respec-
tively.3 Changing the assumed values of AC;>, ACpe,
and Tol(AH-ToACPl2) within the limits allowed in
table 3 did not alter the calculated value of To by more
than ±0.5 °K. The results are as anticipated by the
arguments of the previous section.

3 For comparison, the melting data were fit to eq (1) and gave To = 413.8 °K with standard
deviations of 0.36 and 0.14 °K respectively. Hence, eq (4) does offer some improvement
of fit over eq (1).
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* The results lead strongly to the conclusion that To
is very nearly equal to 417.9 °K. To apply an uncer-

* tainty based on three standard deviations (3 X 0.12 °K)
is misleading since it does not take account of uncer-

* tainties in the functional form of (4), but it is difficult
to see how To could be altered by more than 0.5 °K by
any reasonable means. Hence, the results essentially

, confirm those of Flory and Vrij with a slight but sig-
nificant reduction in their estimate of To = 418.5

r. ±1.0 °K because of two relatively small terms which
they neglected.

5. Discussion

The highest experimentally observed melting tem-
perature for polyethylene is 138.7 °C, and for poly-
methylene, 141.4 °C [6, 7]. Both of these were ex-
tended-chain pressure-crystallized specimens. Brown
and Eby [8] used a form of eq (1) to extrapolate the
melting temperatures of polyethlene to infinite molecu-
lar weight and found To =143.5 °C. By the same

% procedure Fujiwara and Yoshida [9] found To — 144.8
°C. Weeks [10] used a plot of crystallization versus

^ melting temperatures and extrapolated the data to
the line Tc = Tm to find To = 145.5 °C. Thus, a value
of To (paraffins) — 145 °C is not out of line with extrap-
olated values for To (polyethylene), but is significantly

r> higher than experimentally observed melting points
for extended chain polyethylene where there should
be no effect from chain folded surfaces. An overall
explanation of the melting data for polyethylene seems
still to be lacking.

It is of interest to examine eq (3) in the limit of large n,

Tm (paraffins, n D=ro(i AGe-RTolnn\
nAH )

(7)

For a polymer, one would observe some contribu-
tion from the R In n term if the chain ends were ordered
in the crystal. Given a narrow length-fraction of
polyethylene, one might find a high degree of chain
end ordering in extended chain crystals, and very
little chain end ordering in the folded chain crystals.
Assume that AGe is the same for any type of crystal
and that a term RTo In a n takes care of end group
ordering effects where a has a value from 1/n (com-
pletely disordered) to 1 (completely ordered), depend-
ing on n, the distribution in length and the mode of
crystallization. Assume further that AG/ is the free
energy contributed to the crystal by a mole of folds in
excess of that attributable to the associated CH2-
groups if in a nonfolded configuration, and that the
folds, when present in the crystal, occur in regular
planes separated by n/ carbon atoms. We can now
modify eq (7) as follows,

Tm (polyethylene, n > 1)

^ I", , AGe-ToR In an AGy-1
|_ nAH nfAM] (8)

in order to explicitly account for both chain ends and
folds.

Equation (8) can be compared to the well-known
equation,

Tm — u (9)

Here <re = -(C\2A)AGs erg/cm2, ^ = 18.5X1O~16 cm2

= the effective cross-sectional area of a CH2 chain,
C = 6.95X1O~17 ergs-moles/cal-molecule is a dimen-
sional conversion constant, /=1.27 n/XlO~8 cm and
AA/=(C/1.27 X 10-M)A// = 2.96 X 109 ergs/cm3 is
the heat of fusion of a CH2 chain crystal.

One can now write (8) in the form of (9) to a good
approximation by letting

J. o "~— J
AGe -TpR In a n !

nAH J (10)

where To is the effective convergence temperature for
a polymer containing end groups. To was calculated
using ro = 417.9, AGe=-3,400 cal/mole, A#=1000
cal/mole for the two limiting values of cto, and the
results are shown in figure 4, plotted as a function of
the number of chain ends per 1000 carbon atoms.

Notice that the apparent convergence temperature for
our hypothetical polyethylene is lower when the chain
ends are ordered (a= 1) than when the chain ends are
disordered (a=l/rc). This result is of interest pri-
marily because the experimental results mentioned
at the beginning of this section give higher values for

418
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2 3 4 5 6
CHAIN ENDS PER IOOO CARBONS

FIGURE 4. Effective To for polyethylene fractions as a function of
the number of chain ends (calculated from eq (10)).

The a = 1 line represents the case of extended chain crystals with ordered methyl layers
and the a = 1/n line applies to chain folded crystals where the chain ends are supposed
to be randomly ordered in the crystal.
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To for folded crystals of polyethylene than the actual
measured values for extended chain polyethylene.
(The former would presumably exhibit more randomi-
zation of ends than the latter.) Also notice that the
depression in To is not insignificant for typical poly-
ethylene where the weight average molecule has about
1000 carbons (2 ends per 1000 carbons) [7]. We shall
not procede further to include the additional effects of
length distribution and side branching but merely
emphasize the significant point here that chain ends
play an important part in calculating thermodynamic
quantities for polyethylene and one can use the
To = 417.9 °K calculated in this paper only if one in-
cludes AGe^RTo In n explidty in polyethylene melting
expressions like (8).

Finally, it should be mentioned that the increase in
To to 144.7 °C does not greatly alter the results in
reference [3] where the thermodynamic properties of
an infinite CH2 chain crystal and liquid were obtained
from paraffin data. Also the introduction of the R In n
term does not affect those results since the nonline-
arity, although not understood, was recognized and
taken into account empirically in that paper.

6. Appendix A

In order to examine the theoretical form of the liquid-
glass entropy difference, ASig, as predicted by the
liquid lattice theory (for a general discussion of the
theory see Miller [4]), it is convenient to start with eq
20 in reference [5].4 This equation includes the im-
portant effects of chain stiffness. Letting their z, the
primary valance of the backbone chain atoms, equal
4 and writing ASig as a molar quantity, eq 20 [5] is,

= n ln(Vo/So) + np In(F0/Sg)

(A.I)

where R = molar gas constant, n = number of carbon
atoms in the chain, p = no/n nx — fraction of vacant, Tio,
to occupied, n nx, lattice sites (nx — number of n
— mers), Vo = nol(n nx + no)=pl(l +p) = volume frac-
tion of vacant to total lattice sites, So = 2nol[(n+l)nx
-\-2no] and

where A/3 = (€2 — 61)//? 7* and (€2 —€1) is the energy
difference between the trans and gauche configurations
for a carbon-carbon bond.

Ignoring p compared to 1 (the derivation was carried
out without simplications and gave essentially the same
results), writing Fo/So = (l/2)(1 + 1/TI) and dropping the

second term in (A.I) gives,

ASig/R = nln (1/2)(1 + l//i) + In Sn(l

= n(-ln 2+A) + Qn 3 -

Expanding,

and

n) + (n-3)A

l) In (1H-

= n( -In 2 + A) + (1 + In 3 - SA)

+ ln/ i+ 1/2 (1/n)-(1/6) (1/n2). (A-2)

Thus we have in addition to the linear and constant
terms an unalterable In n term and a power series
in (1/n).

Of some further interest are the predicted magni-
tudes of the coefficients. Letting (e2 — €i) = 500
cal/mole, then A = 1.0 at 300 °K and we have,

= 0.3n - 0.9 + In n + (1/2) (1/n) - (1/6) (1/n2).

Experimentally, the liquid crystal entropy differ-
ences at 300 °K for the n-paraffins fit roughly,

(ASiJR) = In + 0.5 + In n + 2.6(l/n) - 3(l/n2).

The agreement is not good but we can improve things
somewhat by taking account of the extra volume of
a CH3 group compared to a CH2 group. From the
x-ray length of the orthorhombic phase Z = (1.27 n + 2)
X 10~8 cm indicating an effective CH3 length of roughly
twice a CH2 length. Replacing n by n + 2 gives,

4 This equation actually deals with the configurational entropy difference between the
liquid and a zero configuration^ entropy glass and hence should equally well apply to the
configurational entropy difference between the liquid and ordered crystal.

+ 2 . 5 ( 1 / n ) - 3 . 2 ( 1 / n 2 ) + . . . .

Even the discrepancy in the constant term is now
not too disturbing, and the numerical agreement lends
some support to the adoption of the above form for
AS
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